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ABSTRACT

Based on the original development of radial mixing effects by Gallimore, the development
of the governing equations for hub-to-tip streamline curvature solutions in tubomachinery
passages and blade rows and incorporating viscous radial mixing is presented. Arbitrary
passage geometries and quasi-orthogonal descriptions are accounted for. FORTRAN
program coding is carried out for the special case of unbladed, axial-flow passages. Flow
solutions are obtained by iteration based on fixed streamline patterns in the meridional
plane followed by further iterations involving readjustment of the streamlines until overall
convergence is obtained. Simple examples are presented to illustrate the solution
technique. This work was carried out under AFOSR Grant F49620-92-J-0026.
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SYMBOLS AND NOTATION

A, B Parameter used to integrate the momentum equation
B unit vector tangent to the mean blade surface and which lies in the q-0

plane at an angle E from the q-o direction
E0, E0, En viscous body force components
fo, Io, fm distributed blade body force components
fP force vector normal to the blade surface
g gravitational acceleration
H stagnation enthalpy
b static enthalpy
i quasi-orthogonal index
j streamline index
k heat transfer coefficient
m meridional direction
1h mass flow rate
n normal direction
p static pressure
r radial direction
T stagnation pressure
T static temperature
z axial direction
Vz, V., V0, V, velocities

Sc Schmidt number Sc =1/(PE)
Pr Prandtl number Pr =I c,/k

eý, e,, em unit vectors
e., e", e, normal strain rates

e.., eý., e. shear strain rates

r0 radius of curvature
q heat flux
s entropy

GREEK
B angle measured from the meridional direction to a unit vector tangent to

the turbomachine blade (see Fig. Al)
y quasi-orthogonal lean angle measured from the radial direction
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mixing coefficient
0 tangential direction

viscosity
p density
a,., Uor, a,,m stess tensor comonenets
40 angle measured from the axial direction to a line tangent to a streamline
,It viscous dissipation function
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I. INTRODUCTION

For many ye-irs, axisymmetric solutions obtained from streamline curvature

analyses have been a standard approach in analyzing axial compressor or turbine design

and performance. In this approach, the flow calculations are reduced as a practical

consideration to a mathematically two-dimensional problem in which the through-flow is

assumed to be steady, inviscid, and confined to concentric stream surfaces. As a result,

no transport of mass, momentum, or ei.ergy takes place across these concentric surfaces,

and thus no accounting of essentially three-dimensional effects is made due to secondary

flows, blade or endwall boundary layer flows, or tip leakage flows. In particular,

comparisons with detailed interstage traverses have shown that calculated results do not

accurately model radial profiles of stagnation temperature, pressure, and flow angle as the

profiles develop through the machine. Thus inclusion of spanwise mixing terms in the

through-flow calculations would serve as important function in improving the modeling of

radial profiles and allow more realistic modeling of losses. Streamline curvature

calculations are carried out in an iterative fashion to satisfy momentum and continuity

requirements along quasi-orthogonals established in the two-dimensional field. These

calculations have proved to be acceptable in terms of stability and convergence, at least in

the case of hub-to-tip solutions conducted in the meridional plane. This quasi 3-D

approach is very likely to continue as the standard method of aerodynamic analysis in

turbomachinery for some years to come, although fully 3-D codes are used on occasion to

further refine details of the flow.
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Practical approaches to account for secondary flow effects have had a considerably

heuristic goal in devising reasonably simple but adequate models. Wennerstrom (1991), in

reviewing modeling ideas that have been proposed over the last 20 or 25 years, points out

that an approach based on transport phenomena has been used to superimpose semi-

empirical models of secondary flow features as corrections to otherwise classical

axisymmetric solutions. Wennerstrom has termed these modeling attempts as hybrid

solutions since they are not truly two-dimensional, nor are they fully three-dimensional.

By necessity, the objective is not to deal with the three-dimensional details of the flow,

but to deal with the overall computation for arbitrary geometries. The major contributors

to the modeling efforts in recent years have been Adkins and Smith (1982), who proposed

that secondary flows were responsible for spanwise mixing, and Gallimore and Cumpsty

(1986), who viewed turbulent diffusion, rather than secondary flow, to be the dominant

mechanism of spanwise mixing. Leylek and Wisler (1991) have, through extensive

numerical analysis and experiments, largely resolved the issue of the dominant mixing

mechanism. They concluded that the relative importance of secondary flow and turbulent

diffusion depend' --o)n stage loading, solidity, and aspect ratio. Thus, it would appear

that both mechanisms should be incorporated in the performance calculation process. It is

worth noting that if one is able to predict with reasonable assurance the performance of a

given machine, then one has the most powerful design tools available. Howard and

Gallimore (1992) extended the turbulent diffusion model of Gallimore and Cumpsty

(1986) to include a viscous wall.
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The objective of the research described in this work was to develop the governing

equations for hub-to-tip flow analysis in intrinsic coordinates using the streamline

curvature throughflow method incorporating the turbulent diffusion model of spanwise

mixing developed by Gallimore and Cumpsty.

A special case of the governing equations for unbladed, axial-flow passages was

then used to create a FORTRAN computer program to demonstrate the iterative solution

technique.



4

2. GOVERNING EQUATIONS FOR HUB-TO-TIP FLOW ANALYSIS

2.1 The Momentum Equations

Turbomachinery flow is viscous, compressible, unsteady, and highly three-

dimensional. One method often used in turbomachinery design and analysis is to assume

steady, axisymmetric flow through the annular passage, allowing the flow to be treated in

terms of a so-called hub-to-tip analysis in the meridional plane. Thus the flow analysis is

reduced to one involving only two space dimensions. In the case of bladed regions, these

flow simplifications are equivalent to assuming an infinite number of infinitely thin

blades.

Figure 2. 1 shows the meridional plane; a cylindrical coordinate system (r, 0, z) is

indicated with the z axis aligned along the axis of the machine, and r pointing in the

radial direction. The 0 or tangential direction points out of the paper normal to the

meridional plane. Also shown in Figure 2.1 is an intrinsic coordinate system (n, 0, m)

with the m and n coordinates lying in the plane. The m coordinate corresponds to the

meridional streamlines in the flow, and the n coordinate is orthogonal to them. Thus the

flow velocity can be expressed as

where V. is the meridional velocity, and V. is the tangential velocity. The angle 4 is the

slope of the streamlines measured from the z-axis, and e. and e. are unit vectors along the
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m and n coordinate directions. The (n, 0, m) coordinates will be used in the development

of the analysis which follows.

In Figure 2.2, the meridional plane is shown again with representative hub and tip

boundaries of the annulus, and with rotor and stator blade rows included. In intrinsic

coordinates, the normal, tangential, and meridional momentum equations may be written

(Tsien, 1958) as

+ Vmn + + (sin+
rC060 - V. o =aan r P n

am an Mr a n)

- °°° r
e__ + pfam ,

Vv, erV.) acoe , O+oG o (sine . +G sil,
ram am an (r an) r (2.3)

+O •° - +on r + pf
am)
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Figure 2.2 Turbomachine geometry
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pV 2 sinm] amm + (+--a Mtam r am mn r

+G 04_ A)+Gm___" (2.4)

r Lion OM "an

- Geel-- + PfM
r

where p is density, the various a terms are the stress tensor components, the f terms are

distributed blade body forces, and Vm, Ve, 0, and r are as previously defined. See

Appendix A for the derivation of the distributed blade body force components.

The stress-strain rate relationships for a crmpressible fluid may be found in White

(1991). Using thermodynamic pressure and viscosity, the stress-strain rate relationships

written in terms of the intrinsic coordinates (n, 6, m) are:

a,, = -p + 2pe,
oo= -p + 2ie.,

a, = -p + 21.e,,. (2.5)

o, =a,,,,,im = 21we,.
CIOe c on = 2pe.,

a,,e G = L = e.6

The strain rates may be expressed as functions of the velocity gradients (White, 1991).

Substituting for the strain rates in Eqn. (2.5), the stress-strain rate equations take the

form:
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ann = -p + 2 aV

G0e = -P+ 2+2iv 2 sin4
r
arm,, = -p +21
dm

(2.6)
OR GM (avm V

"= .ant  am)

Cy Cn =1 .(- -n 2CO4J

%.,= .., I•On Or )

Omo = Gem =1 aD -m Le si

These expressions for the stresses may be substituted into Eqns. (2.2) - (2.4), leaving the

equations of motion as functions of p, p, 4, A, V. and V., andf., fe, and f,.

As an approach to viscous analysis of hub-to-tip flows, Gallimore (1985) proposed

a spanwise mixing model in cylindrical coordinates of the velocity and temperature fields

by retaining in the momentum equations the normal stresses, a,, a.., or, and only the

shear stresses acting on the inner and outer cylindrical surfaces of the fluid element, ore

and a,,. He argued also that, because mixing is assumed to occur across the cylindrical

surfaces, the normal strain rates in the axial and tangential directions (e. and eo@) could

be neglected. Heat transfer due to mixing would be modeled by retaining only radial

temperature gradients in the energy equation.

A spanwise mixing model for intrinsic coordinates may be derived in a similar

fashion with mixing assumed to occur across the meridional stream surfaces. Therefore,
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the shear stresses cae and a, are retained while the remaining shear stresses are neglected

and the normal stresses, a,, o., and a.o, are retained with the strain rates e.. and eee

neglected. Heat transfer due to mixing is modeled by retaining only normal temperature

gradients in the energy equation. Figure 2.3 shows a fluid element in intrinsic coordinates

with the stress terms retained by the spanwise mixing model. The momentum equations

obtained from Eqns. (2.2) - (2.4) and (2.6) incorporating the spanwise mixing model in

intrinsic coordinates are:

(LVOS-Z~ V+ (2.7)

+~ 2 LV04 ýi-A + P~fn

"- -n + •-• -- (2.8)

r am Mon r ft--



1o

Figure 2.3. Fluid element for mixing model
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Lmam ' V 2]L - -LP + an av mj

am aCm an
+ 2(OV a-VrA CO •°O - 4-m) (2.9)

an ,am r am

- 21 (A) + pf

The notation in these equations may be simplified to

4 2
v 2- _ 0 Cos =_O1p + E, +f (2.10)

M ft r pan

V',rv) E +f(2.11)
r am

ma Ve2 S =_1 + E, + f, (2.12)

am r p-m

where the E., E., and E. terms represent viscous body forces per unit mass and are

written as:
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Eo a n• r) + ýLr r CO4 4
OW (2.13)

am

Em Iai+i 4 ) (av' '
Pan an r a

-(A)2]V

2.2 The Radial Equilibrium Equation

The determination of flow variables in the meridional plane is accomplished by the

iterative solution of the uncoupled momentum and continuity equations. The solution of

the normal and meridional momentum equations is complicated by the fact that both the

n and m directions change throughout the flow field as the computation approaches

convergence. The flow field solution may be simplified by constructing fixed quasi-

orthogonal (q-o) coordinates approximately perpendicular to the streamlines. The n

direction may then be eliminated by transforming the momentum equations to the m and

q-o directions. A flow field grid is then formed by the streamlines and the quasi-

orthogonals. Figure 2.4 shows the coordinate systems in the meridional plane, including
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the defined q-o. The angle, y, between the r and q-o directions is taken to be positive

when measured as shown.

The chain rule for a function of two variables may be written to express the

directional derivative along the q-o as:

a() _ a)dn a ()dm (2.14)
a on dq ftmdq

In addition, the following geometric relationships can be found from Figure 2.4:

= -CO + ) a _sin( + y) (2.15)

a aq

Combining Eqns. (2.14) and (2.15) and solving for a( )/on yields

a) = sec(O+y)- o- tan(4+y)--a (2.16)

This relationship is used in the development below to transform the momentum

component equations to the (m, q) coordinate system.

From Gibbs' Tds relationship we can write

S= -Tds + dH - VdV (2.17)

P

where H is the stagnation enthalpy and V is the flow velocity. The pressure gradients in
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center of
curvature

n

• • m

meridional
streamline

z

Figure 2.4. The (m, n), (r, z), and (m, q) coordinate systems in the
meridional plane
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the m and n directions therefore are

ap = T as a _ V av
pam am am am (2.18)
Iap = as + aH _ av
pan an an an

Substituting Eqns (2.18) into the normal and meridional momentum equations, Eqns.

(2.10) and (2.12), the momentum equations become:

OVm Vo 2.sin, = OaH + Vx ýV,- + V, ýV°e + TA E--f
a'm ar -a-"m °am am (2.19)

(2.19)

VV2  a aV.+aV +E • •fV2. E- +0 T'• + .Hf" M r an• a-•n a--n an +E•+f

Using Eqn. (2.16) to replace the n directional gradients in the normal momentum

equation with gradients in the m and q directions, we obtain

24 2 aH + HV2m - co = -sec(4 +y)- + tan(O+y)-
ft r aq am

"+ Tsc(+ y) A + Ttan(4 + y) as
aqM

av av (2.20)
"+ V. sec( + y)-T + Vtn4+y)--20

aq am

" VeSc=4+ y) !~ .=4 + )aV8

+ E. +f
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The m and n momentum equations may now be combined by multiplying the m

momentum equation by tan(4 + y) and adding the result to the n momentum equation.

Further rearrangement gives

[OV ]v 2a4 Vo2 co

tan(4s + y) E _m r *-Em fm]+Vm2 r

_i a aV6  (2.21)
-sec(€+y) + sec(,+y y) + sec(O+y)Va

qq

Multiplying Eqn. (2.21) by cos(O + y) and rearranging gives:

av, av, . 2A H TaS
dq am am aq - -q

- sin(4 + Y)(Em +fx) - cos( + yXE, +f,,) (2.22)
V2 ,2 aV

C084+ Y)COO4~ -sin( + y)sinm8 
- av

r r aq

The radius of curvature, r,, of the meridional streamline is defined by:

1&I) _(2.23)
r¢ am

Using this result in Eqn (2.22) along with further rearrangement, and recognizing that

oar/a = cos y , we get the final form of radial equilibrium equation
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Vv. - s ( y)V.-VT + co•a•v V + ay + - TA

Sam i q aq (2.24)

SinX +yY) [,Lm]m - co6(1+ y) [E,+f,] - . r V.)r a

Equation (2.16) may be used to eliminate the n directional gradient terms in the

normal, tangential, and meridional viscous body force equations, leaving

E, {2sec(O+2y) [,- (sec(+y) - +-

- 2tn4 )'ýsV(e( y)A~ -tan( + y)-4)1 +
am \ aq mft (2.25)

av -~ (+ Y). -M VmA)(sco( + Y)A 4 )

om(r &m)J
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-e jsc(ý+ y) I+[ ir(sec(, +y) I(...A - tan(ý yi(±)] (226

P qaq ramamr

+- Y , a[ý e(O +Y)8v.e - tan(O +Y)- - (_1 (.6
am8m d'm) (227

+a( 
+ Y)

E2. Imsec(*O+ y)! l tafl(O+ y)8 4T-tnO+ )T-V
P ~~~aq qa j

Beaue omntmandtmpeaemxn are assume toocuroly in.the

normal direction, the terms in the viscous body force equations which contain velocity

gradients in the meridional direction will be neglected, leaving
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-2tan(4 + y)-a F& Vm(sec(4ý + yA- tan(4 + (2.28)+

4+y) 2 .tafl(2.28)Ž

11 (se.ý+ y)v-i[ v A(sec(o + y)Ak -~.tafl( + y)i 2.9

ta(+2)pIVIsA (C+ySOl - v-I

am SO v. j , )a

p 2 r V.(s -A + y). !-!ý Le tan + y) ) } r
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In the iterative solution of the radial equilibrium equation, the first two terms on

the right hand side of Eqn. (2.24) use values of V,, O+y, and r, from a previous solution

A ,i,. low field. In order to close the system, equations are needed for the entropy and

itagn ition enthalpy gradients. These equations are derived in the following sections.

2.3 The Energy Equation

Expressed in terms of enthalpy, the energy equation may be written:

Dh Dp + (2.31)
Dt Dt

where 4 is heat flux and 4, is the dissipation function. Gibbs' Tds relationship, Eqn.

(2.17), may be used to eliminate the pressure derivative in the energy equation

yielding:

pT- = -V'4 + 0 (2.32)
Dt

The left hand side of this equation may be expanded by using the definition of the

substantial derivative, which, due to the assumption of steady flow, yields

DrS as
pTDT = p TV n -V4 + 0 (2.33)

The intrinsic coordinate forms of the del operator and the divergence are needed in
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order to expand the heat transfer term. The del operator is defined as

V e a a (2.34
v= em +• e.-(2

"am an

Retaining only the n directional temperature gradients, V T gives

VT = e - (2.35)

Assumirs that conduction is modeled by Fourier's Law , the gradient of the heat flux

may expanded to give

V.(-k)VT = V(-k).VT + (-k)V.VT (2.36)

where k is the coefficient of thermal conductivity. The coordinate system geometry gives

the following relationships for the derivatives of the unit vectors

"-M V = -- 4" " -0n _ (2.37)

Combining Eqn. (2.34) - (2.37) gives

-V4 = -W(-kV)a (k -T_ (2.38)
3aman an ( an)

The second term on the right hand side of the energy equation, Eqn. (2.31), is the

dissipation function, which, written in terms of strain rates (Hughs and Gaylord, 1964)
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for the intrinsic coordinates, (n, 0, m) is

S= Ip {2(e2.' + e.'+ e,,,2) + (2e,,)2 + (2e,) 2 + (2eom) 2I (2.39)

The dissipation function may be simplified by using the mixing model assumption in

which the normal strain rates and 8 V/am may be neglected. With these assumptions, the

dissipation function becomes:

{[v -L CS ýV[-m _ V [4f+ esiof} (2.4.0)
9 n ran ,m r

Substituting Eqns. (2.38) and (2.40), the energy equation, Eqn. (2.31) may be

written:

_T_ k I1,8T 1.k (kiT-+ 0 11 (2.41)
ft p TV. M on p TV. 5-W dn) p TV. am

where aSe/fm is an empirically based entropy gradient which accounts for losses

generated by flow over the blades.

Equation (2.16) is used to transform Eqn. (2.38) from the (n, m) to the (m, q)

coordinate system yielding
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am pr-V. am ap V

-tan(40+ y)_ak______+_y aT)

PTV om f am
(2.42)

-ý VII o )a r aq a
V sin. av 0  "8

r 0)°as,

2.4 The Stagnation Enthalpy Equation

The definition of stagnation enthalpy may be combined with Gibbs' Tds

relationship to give

Va a av - Tas (2.43)
pam am"am am am

Substituting Eqn. (2.43) into the meridional momentum equation, Eqn. (2.12), yields

L 2  _ -& + E

r sineTaH as (2.a4)

Solving Eqn. (2.4) for aHIam and recognizing that sinO = ar/am gives



24

aH_ = 1 a 1I(rV,)2 + Em +fm (2.45)
am Om 2r 2  am

2.5 The Angular Momentum Equation

Multiplying the tangential momentum equation, Eqn. (2.11), by V0/Vm and

rearranging yields a form of the angular momentum equation convenient for use with the

stagnation enthalpy, Eqn. (244), and radial equilibrium, Eqn. (2.24) equations:

1 V(r V.)2  Ve

2r 2  0m - - (Ee +fe) (2.46)

2.6 Closure of the System of Equations

In the preceding sections, seven equations have been developed from the three

component momentum equations and the energy equation. These equations are:

E. viscous body force Eqn. (2.28)
E, viscous body force Eqn. (2.29)
E. viscous body force Eqn. (2.30)
Radial equilibrium Eqn. (2.24)
Energy/entropy Eqn. (2.42)
Meridional momentum/enthalpy Eqn. (2.45)
Angular momentum Eqn. (2.46)

Additional equations are needed to close the system of equations.

An equation for density may be derived by integrating Gibbs' Tds relationship to

give
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s = cplnT - Rlnp (2.47)

where s is the entropy, R is the gas constant, and c, is the specific heat at constant

pressure. An arbitrary reference state of s = 0 at T = 1 and p = 1 was used for

integration of the Tds relationship. Combining Eqn (2.47) with the ideal gas equation of

state yields

c_-R

T R e R (2.48)
R

The definition of stagnation enthalpy may be rearranged to give the temperature

equation

T= H Vn + . (2.49)
C, 2cP

The streamline slope, 0, and the q-o angle, y, are determined from the streamlines

and input quasi-orthogonal geometry (see Fig 2.4) by
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az). (2.50)

y =tan aar)q

Through specification of the Prandtl number, Pr, the Schmidt number, Sc, and the

mixing coefficient, E, the viscosity and heat transfer coefficient may be determined by

4 Scpe

k -= CP 
(2 .5 1)

Pr

The mixing coefficient is a function of the blade and annulus geometry and the

turbomachine operating conditions. Those interested in more details on the calculation of e

are referred to Gallimore (1985) and Schlichting (1979).

The distributed blade body forces, f., fe, and f., required in Eqns. (2.24), (2.45),

and (2.46), depend on blade geometry for their calculation (See Appendix A).

For a given streamline pattern, the seven equations listed above combined with

Eqns. (2.48) - (2.51) constitute a complete set of equations for streamline curvature

analysis. The input variables required for this system are the Schmidt and Prandtl number,

the mixing coefficient, the constant pressure specific heat, the gas constant, and the

empirical entropy gradient as determined from blade geometry and flow conditions.
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2.7 Inlet Conditions

A consistent set of initial conditions is needed to start the iterative solution of the

flow field. The following assumptions are made at the inlet to the flow annulus:

1. The inlet station q-o is assumed to be radial; therefore, angle y = 0 and aq may

be replaced by ar in the system of equations (See Fig. 2.4).

2. The flow is inviscid and isentropic prior to reaching the inlet. As a result of this

assumption, Eqns. (2.28), (2.29), (2.30), (2.42), and (2.45) reduce to zero,

identically.

3. Streamlines at the inlet station are assumed to be flat, i.e., 4) = 0, r. = 00, and

V. = V, (See Fig. 2.4).

4. There are no blades at the inlet station.

5. Stagnation temperature and pressure are assumed to be constant across the inlet

station; therefore, H and s are also constant across the inlet.

These assumptions result in a reduced set of equations for the inlet.

Using the assumptions listed above, the radial equilibrium equation, Eqn. (2.24),

reduces to the simple radial equilibrium equation

av
V V68L.(rV 0N (2.52);C & r or

Equations (2.47) - (2.49) and (2.51), used to compute entropy, density,

temperature, viscosity, and the heat transfer coefficient, remain unchanged.
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If the inlet velocity profile contains no V6 component (zero whirl at the inlet), the

right hand side of Eqn. (2.52) reduces to zero and the axial velocity, V,, must be constant

across the inlet.

For the case of the inlet velocity profile containing an arbitrary V. distribution

with radius, Eqn. (2.52) must be integrated across the inlet to give the profile of the axial

velocity, V,.

The continuity equation is integrated across the inlet from streamline to streamline

to obtain the mass flow rate which is used to satisfy continuity for the remaining q-os.

The streamline to streamline integration also allows the computation of the fraction of the

mass flow which passes between the hub and each streamline outward towards the outer

casing. The radial location of each streamline is adjusted as necessary to maintain the

same mass flow fraction as occurred at the inlet station. Details of the mass flow

integration are covered in a following section.

2.8 Solution Procedure for the Governing Equations in Bladed Flow Regions

The flow annulus of a turbomachine may be divided into unbladed and bladed

regions with the bladed regions further divided into rotor and stator blade rows. The

solution procedure for spanwise mixing based on streamline curvature through-flow

analysis for bladed regions is outlined as follows:

1. The velocities, velocity gradients, and streamline pattern from a previous iteration

or initial solution estimate are used to compute the viscous body forces, E., E.,

and E., from Eqns. (2.28) - (2.30), and the distributed blade body forces, f.,
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and f.,, from Eqns. (A4) and (A5) in Appendix A.

2. The temperature data obtained from the temperature field in a previous iteration or

initial solution estimate are combined with the empirical entropy gradient, the

velocity gradients and the streamline pattern to solve the energy equation, Eqn.

(2.42), for the meridional entropy gradient along each streamline.

3. The angular momentum equation, Eqn. (2.43), is solved to give the meridional

gradient of angular momentum along each streamline.

4. Using the gradients determined from the energy and angular momentum equations

in steps 2 and 3, and the meridional body force, E., determined in step 1, the

meridional gradient of stagnation enthalpy is computed for each streamline using

Eqn. (2.41).

5. The entropy, angular momentum, and stagnation enthalpy values are then updated

for each streamline and q-o intersection using the gradients determined above.

6. The temperatures and densities are updated for each intersection using Eqns. (2.48)

and (2.49). The entropy, stagnation enthalpy, and velocity gradients in the q-o

direction are then computed using the data determined in step 5.

7. The radial equilibrium equation is integrated to give the meridional velocity

distribution, V., along each q-o.

8. The new V. velocity profile computed in step 7 is used in the integration of the

continuity equation at each q-o. The mass flow rate thus determined is used to

adjust the constant of integration in step 7 as needed to achieve the same annulus
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mass flow as was determined at the inlet station. The solution procedure iterates on

steps 7 and 8 until the difference between the mass flow rates at each q-o and the

inlet lies within an arbitrarily chosen tolerance.

9. The streamline radial locations are adjusted by interpolating the mass flow

distributions to maintain same fraction of mass flow between the hub and each

streamline as at the inlet station.

10. Overall convergence of the solution is determined by comparing the streamline

shifts between successive iterations for the flow field with an arbitrarily chosen

tolerance. If the streamline shifting is within the tolerance, the flow field solution

has converged. If not, the streamline pattern is updated with the results of step 9

and the solution repeated again starting at step 1.

2.9 Solution Procedure for the Governing Equations in Unbladed Flow Regions

The solution procedure for bladed regions differs from the unbladed regions only

by the inclusion of the blade body forces and the empirical entropy gradient.
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3. SOLUTION METHOD, COMPUTER PROGRAM DEVELOPMENT AND

OPERATION

The governing equations developed in Chapter 2 are written in finite difference

form and programmed for iterative solution. The computer program was developed for a

blade-free annulus with inviscid and adiabatic endwalls. The annulus is essentially axial

with the q-os directed radially from the hub to the outer casing. The governing equations

are in the form derived by Gallimore (1985) which are a special case of the equations

given in Chapter 2.

The following describes the main program involved and the associated subroutines

which have been developed. Figure 3.1 is a mapping of the main program and the

subroutines called. As stated previously, the solution is iterative with the sequence of

execution essentially from left to right across the figure. Execution is repeated numerous

times until convergence is obtained and Subroutine OUTPUT is called to print the

solution results.

The complete FORTRAN code for the program is contained in Appendix C.

Comment lines in the main program and subroutines include a glossary of the FORTRAN

variable names used.

3.1 Main Program and Control of the Calculations

The primary purpose of the main program is to control the order in which the

subroutines are called to carry out a solution. The main program also prints statements

which list the subroutine currently being executed and the number of iterations completed.
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Subroutine INPUT reads the input data for the inlet station q-o and then calls

Subroutine INLET as shown in Fig. 3. 1. Subroutine INLET computes values for the flow

field variables such as static enthalpy and entropy. Subroutine INLET in turn calls

DERIV to compute required first and second derivative values for flow field variables.

Subroutine VISCOUS is called by INPUT to compute the viscous body forces, E, and E•,

and the dissipation function, 4.

Subroutine FLOINT calculates the mass flow rate and fraction of mass flow rate

between adjacent streamlines based on the inlet q-o input data.

Subroutine ESTIM initializes the downstream flow field variables and streamline

pattern based on the inlet q-o input data and the hub and casing geometry. Note that

INPUT, FLOINT, and ESTIM are called only once at the start of program execution.

Subroutines CURVE through RADIAL comprise the iterative portion of the

program for the q-os downstream of the inlet station and implement the solution

procedure outlined in Sections 2.8 and 2.9. A global iteration consists of one pass through

the annulus executing Subroutines VISCOUS through CONVERI for all the downstream

q-os with the streamline radial locations held constant and is completed once the change in

meridional velocity from one pass to the next is less than a user chosen tolerance as

determined by Subroutine CONVERI. Subroutines RADIAL and INTERP then compute

the new streamline locations for the converged velocity field.

A universal iteration consists of executing Subroutines CURVE through

CONVER2 for all the downstream q-os. After a global iteration, CONVER2 is called to
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check for streamline convergence which is determined by comparing the streamline shifts

between successive universal iterations with an arbitrarily chosen tolerance. If

convergence has not been attained, the main program starts a new universal iteration at

Subroutine CURVE. Once the flow field has converged, Subroutine OUTPUT is called to

print the converged flow field values to an output data file.

3.2 Subroutine Descriptions

Each subroutine listing in Appendix C contains a glossary of the FORTRAN

variable names used as well as descriptions of the input required and the variables

calculated as output. The following descriptions contain the finite difference formulations

used.

Subroutine INPUT opens an existing unformatted data file called inputl.dat and

reads the data required by the program. Figure 3.2 shows the meridional plane with

arbitrary hub and casing shapes and the FORTRAN variables used in inputl.dat.

Stagnation temperature and pressure, represented by FORTRAN variables TEMPIN

and PRESIN, are assumed to be constant across the inlet station. MIXCO, the mixing

coefficient described in Chapter 2, is a function of blade and annulus geometry and the

turbomachine operating conditions. NSTRM is the number of streamlines in the flow field

and NSTNS is the number of q-os. The index variable, J, identified the streamlines, and I

identifies the quasi-orthogonals, as shown in Fig. 3.2.

The user supplies the radial location of each streamline at the inlet station,

RADIUS(J,I). The tangential velocity for vicb streamline, VTHETA(JI), and the axial
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velocity, VMID, at a middle streamline which is determined by

JMID = INT(NSTRM) + 1 (3.1)

The streamline spacing prescribed at the inlet from hub to casing is arbitrary.

The q-os in the flow field are limited to the radial direction, although the z

direction spacing is arbitrary. The axial location of each q-o is specified by ZLOC(I) and

the radial location of the hub and casing on the q-o by RADIUS(1,I), and

RADIUS(NSTRM,I). The arrangement of the data in file inputl.dat is explained in

comments included with Subroutine INPUT in Appendix C.

Subroutine INLET computes the flow properties for the inlet q-o using Eqns.

(2.47) to (2.49). The flow is assumed to be inviscid and adiabatic prior to reaching the

inlet, and the streamlines at the inlet are take to be straight and parallel to the z axis. For

a blade-free annulus with radial q-os, the simple radial equilibrium equation give in Eqn.

(2.52) applies.

Integration of Eqn. (2.52) along the inlet q-o results in the following expressions

for the axial velocity, V,:

"v - L 2_" _,. r _r (J. d,..NSTRM) (3.2)

r,-, 0 -1 ri
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2j 2 __ j, _-, + _ (3.3)
zj ZJ 2 I +, 3r r. 8r .1ar""'~

The integration results in Eqn. (3.3) proceed from the middle streamline, where Vz =

VMID, to the casing, and in Eqn. (3.4) from the middle streamline to the hub, stepping

streamline by streamline. The gradient terms in Eqns. (3.3) and (3.4) are determined in

Subroutine DERIV as explained below.

The static temperature, entropy, and density for the inlet q-o are determined using

Eqns. (2.47) to (2.49) in the forms:

T=T-• -° " -
2cP

sj =c. cln(T°) - R**•) Lj= ..NSTRM (3.4)

p -R e s

R

Subroutine DERIV contains the finite difference schemes needed to compute the

first and second derivatives of the distributions of flow field variables in the axial or

radial direction. Since the streamline spacing is irregular, the finite difference scheme

takes the variable spacing into account based on linear differencing of the variables

between streamlines. For an arbitrary variable, U(r) along a q-o, the radial gradient at

radius r,.is determined with appropriate weighting for variable streamline spacing as
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au - r': r[L-y 1 ] + rfr [,-, Y=2...NSTRMA- 1) (3.5)
j r,', - r,- [j rj-r, rj+, j-r1- j

A one-sided finite difference scheme is needed to compute the radial gradients at

the hub and outer casing. Applying a second degree polynomial at streamlines j= 1, 2,

and 3 along a q-o (Anderson, et. al., 1988) results in the gradient at the hub radius as

au U2-!, [r.-rT -•,] + -_1 (3.6)
a--= 1  r2 -rr, r3 -r r r3 -r, +r 3 - r,

The corresponding gradient at the casing is

au _ UN7W- - UN7 rM- ~r7 J UNS7- 2 - UNSTR5(
r ' r .r. -,_ - r .- rr, .,2J rM N 5I- -2 - ( 3 .7J

rJsRM•-2- VNSTM- I

The second derivative of U(r) at radius rj is computed as

&U_, ,•,2 [ - U• U--
&2 2r (1 2 ...NSTRM- 1) (3.8)

-,rs -Ir r ,- I

Again, a one-sided finite difference scheme is required at the hub and casing, with

the results being
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___c 2 [ 3 U] 2 U2 U](3-9)
ar2 pi r3 r2 r3 -r r2 -rI r3 -r2

and

2ý [UNSTRIWU2 -UNSTR

ar2j=NSTRM rNSTRM-2 - rVSTI@_ rNSTM-2 NSR (3.10)

.2. UM77rM-I - UNSTRM

rNsTRM_1 - rNSTRM rNsTRU-2 - rNsTM-1l I

Axial gradients along a streamline where needed in the solution are computed

using Eqns. (3.5) to (3.10), but with z replacing r, index i replacing index j, and NSTNS

replacing NSTRM.

Subroutine FLOINT computes the mass flow rate based on the input data at the

inlet q-o. The integration technique used is the trapezoidal rule, with integration

proceeding from streamline to streamline, starting at the hub and stepping radially

outward.

The mass flow rate between adjacent streamlines, j and j-I, using data at the inlet

q-o, is computed by

P iJ = p I- 2 (r 2 r_) - -=2...NSTRM) (3.11)

The total mass flow rate, th, for the annulus is the sum of the mass flow rates
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between the streamlines.

The fraction of the total mass flow rate between the hub and each streamline is

then computed using

fractionj = = (j = 2 ...NSTRM) (3.12)NSTRMf

k=l

The individual fractions of the mass flow rate, therefore, identify the streamlines through

the annulus.

Since the flow at the annulus walls is inviscid and adiabatic, and the annulus is

blade-free, no global energy transfer into our out of the annulus is possible, although

energy may be redistributed within the annulus. As a check on energy conservation, the

mass weighted stagnation enthalpy for the annulus is computed using

1 NS1RAI H H- 33

j-2 k 2

The mass weighted stagnation enthalpy can then be computed for each downstream q-o

and the resulting value compared with the inlet value as a check on the flow field

calculations.

Subroutine ESTIM estimates, for the initial calculations of the flow field, the static

temperature, entropy, density, and streamline radial locations for the q-os downstream
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trom the inlet for i =2 to i = NSTNS, where NSTNS is the number of q-os , or

computing stations. ESTIM is executed once only at the start of the calculations.

Since the annulus cross section may change from q-o to q-o as shown in Fig. 3.2,

the streamline radial locations for the current, or ith, q-o must be estimated using

information from the inlet q-o. The streamline radial locations are compute based on

fractions of the span at the inlet according to

r,,-S- (r,,Nsrpm- rt + r, i=2...NSTRM -1, i=2...NS7NS) (3.14)
rili = ý • - rz~

The axial velocity for the ith q-o is estimated using the mass flow rate determined

at the inlet. The average density at the inlet q-o and throughout the annulus is given by

1 NSTM

NSTRM j-(

Using the annulus area for the ith q-o, g, and the total mass flow rate, ih, the average

axial velocity for the ith q-o is estimated as

- = iA (i = 2...NSTNS) (3.16)
pZý7C r24 Nsnw - r 2 4)

The stagnation properties are approximated by simply carrying the values

downstream from the inlet station. The tangential velocities are similarly carried

downstream. The static temperature, entropy, and density for the ith q-o are determined
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using Eqns. (3.4)

Subroutine CURVE calculates the streamline curvature, meridional flow angle, and

the axial and radial velocities, V, and V., for a q-o. CURVE is the first subroutine

executed within a universal iteration for the flow field.

The streamline curvature at the determined streamline intersections with the q-o is

computed as

1 = z 1..JNS TR) (3.17)
r c, 

+ ( a) ,

where the derivatives of r(z) are determined in DERIV using values of the function at

neighboring q-os.

The meridional flow angle of a streamline, j, at a q-o is determined from the finite

difference form of Eqn. (2.50), or

*o , ,r- (i 2...NS1NS- 1) (3.18)2L + rt(':a:]

At the inlet q-o, 0 = 0 and for the last q-o in the flow field, 4 is determined using the

NSTNS and NSTNS - 1 quasi-orthogonals.

The axial and radial velocities at a q-o are then computed as
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vj , v..•) (Y = 1...NSTNS) (3.19)
V Vj CO6S.

where V. is the meridional velocity computed in subroutine VELO.

Subroutine VISCOUS computes the distributions of the viscous body forces, E,

and E,, and the dissipation function, -t, along a q-o. Using the constraints or assumptions

concerning the annulus and q-o geometry isted at the beginning of this chapter, the

dissipation function given in Eqn. (2.40) becomes

0V) = Ie + (3.20)

and the viscous body forces in Eqns. (2.29) and (2.30) are written as

Eq = 1 a r I A c e _L ~Eo=rrj rj
(3.21)

Ez -- a r Vl

The dissipation function along a given q-o is then computed as

L = + (•(,-) - fj--J- = (3.22)
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where the gradient terms are computed by Subroutine DERIV and the viscosity is

computed using Eqn. (2.51). The viscosity is computed in Subroutine ESTIM for the first

global iteration and in Subroutine GRADIENT for subsequent global iterations.

The viscous body forces are computed using

E - I--r (LO j Voj ] (i.=I...NSTRM)
8j rj or r

(3.23)

Ezj r -a rj '(aVy ]
rT ar j

Subroutine GRADIENT calls Subroutine DERIV to determine the meridional

gradients of entropy, angular momentum, and stagnation enthalpy at a given q-o, and then

updates these flow field variables at that q-o. DERIV is called again to compute the radial

gradients needed for integration of the radial equilibrium equation for this q-o in

subroutine VELO.

Under the constraints or assumptions listed at the beginning of this chapter, the

equations for entropy, angular momentum, and stagnation enthalpy, Eqns. (2.42), (2.46),

and (2.45), written for streamline j at the given q-o are:
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am (r p TVm)j r(p TV)

( 2r2( e (j= 1.. WSTRM) (3.24)

(_)j T as)j + l.(2.r )j + (EzCO j

where the radial gradient terms in Eqns. (3.24) are evaluated using DERIV. The heat

transfer coefficient, k, is computed according to Eqn. (2.51).

The meridional gradients of entropy, angular momentum, and stagnation enthalpy,

computed by Eqns. (3.24), are used to update the flow field variables at the current q-o.

The meridional length of each streamline, j, between given adjacent q-os, i-I and i, is

computed by

Am1 = V(r,, - r + (7Q - (3.25)

The entropy, angular momentum, and stagnation enthalpy are updated along the

given streamline for the q-o according to
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(am
•. + AmIO1 ,a

2= (rV )2  + Am 1 (-)) (3.26)(r Ve), o),,n

H i4  = H i -. + A m ( H~ l

The change in angular momentum from the previous iteration is relaxed using RF,

an arbitrary relaxation factor chosen by the user as

(r V.)2 (NEW) = (rVo)2 (OLD) + RF[(r V)2 - (roV) 2 (OLD)] (3.27)

The tangential velocity, VO, is computed from the updated angular momentum

above, and, in turn, the static temperature, pressure, and density are updated using Eqn.

(3.18).

The radial gradients of the updated entropy, angular momentum, and stagnation

enthalpy along the q-o, required in integration of the radial equilibrium equation, are then

computed along the q-o by Subroutine DERIV. The number of the current q-o is sent to

GRADIENT in the call list and the main program controls the stepping from q-o to q-o,

from i = 2 to i = NSTNS.

Subroutine VELO integrates the radial equilibrium equation to obtain the

meridional velocity profile along a given q-o. The resulting profile is used to determine

the mass flow rate and the constant of integration involved is then adjusted as necessary to
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achieve mass continuity. Once mass continuity is satisfied, the main program steps the

computations to the next q-o.

Using the assuiptions of a blade - free annulus and radially directed quasi-

orthogonals, the radial equilibrium equation, Eqn. (2.24), may be rearranged to give

a B AV2 (3.28)

ar

where

B 2'H - T  ± sr V)E) sin4l (3.29)
ar ar 2r2  ar

and

-A =2 + (3.30)

where A and B are functions of radius, r, along the q-o.

Equation (3.28) is a linear, first order, ordinary differential equation and may be

integrated by using a suitable integrating factor.

Multiplying Eqn. (3.28) by an integrating factor, s, and rearranging yields
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av2 2
S +S A V = sB (3 31)

Or

For the left - hand side of Eqn. (3.31) .o be an exact differential, we require

a =sV2) ai2 + V2 as (3.32)

Comparing Eqns. (3.31) and (3.32), it can be seen that

a-sA (3.33)

ar

from which

s = efA d (3.34)

where a constant of integration has been omitted for simplicity.

Substituting Eqn. (3.34) into Eqn. (3.31) then yields

-- [ef Par V2] = B e fP d (3.35)

Equation (3.35) may now be integrated along a q-o from a point r, where V. = V., to

obtain



49

Vm2 ef -d f [BefA dr'r +V12 ef -Ad (3.36)
r1

For a short distance r, to r, A and B can be approximated as average values A and

. Therefore, Eqn. (3.36) becomes

r

2M = Ar-, e 0 fl (r-r) + Vm2 Ie -(r r) (.7

Evaluating the integral in Eqn. (3.37) and simplifying yields

V2 = B [1.0 - r('0+ V2 e-A(r -r) (3.38)
A

If A = 0, Eqn. (3.38) is indeterminate. Applying L'Hopitals rule to evaluate in

the limit as A goes to zero then gives

V2 (r-r) + V2V.1  (3.39)

The forms of Eqns. (3.38) and (3.39) used to integrate the radial equilibrium

equation from the middle streamline to the tip are
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= -e~~r1~~4 + v -ej(ri -r)
j (3.40)

2 -2V' =;~j , + V2-RA
Br .j_1 V = Jmid1.. NSTR

and for integration from the middle streamline to the hub

V2 ý [1.0 - e-2j(r-jrri')] + 2  Gj(','-e)
A. 1(3.41)

v. = ,r- r,.] + V1

where V. 2 at j.. is the meridional velocity (VMID) from the previous iteration or the

initial solution estimate.

The change in the velocity profile from a previous local iteration is relaxed using

the relaxation factor RF as

V~(EW V2m(LD - V21(L)
(NEW=) V(D(O/+LD)] (3.42)

The integration of the radial equilibrium equation may return negative values for the

square of the meridional velocity. If this occurs, the square of the meridional velocity is

set to 1.0

The mass flow rate and mass weighted stagnation enthalpy are then calculated

using Eqns. (3.11) to (3.13) as described for subroutine FLOINT. Mass continuity is

checked by comparing the difference between di (local) and di (inlet) with a user chosen
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tolerance. If continuity is not satisfied, a secant method routine (Chapra and Canale,

1988) is used to find a new value of V.2 at j., and the radial equilibrium equation is re-

integrated using the new constant of integration. A local iteration is designated as one

integration of the radial equilibrium equation and check of mass continuity.

Subroutine RADIAL adjusts the streamline radial locations to match the required

fractions of the mass flow rate at the current q-o. The meridional velocities which

correspond to the new streamline radii are then interpolated from the velocity profile

using Subroutine INTERP.

The change in radii between iterations is damped using a relaxation factor

(Wilkinson, 1969-70). The optimum relaxation factor as determined by Wilkinson is

RF = 1 (
1+ (1M2!'AZ(SPAN) (.3

where M. is the mean Mach number on a q-o, span is the distance between the outer

casing and the hub, and Az is the quasi-orthogonal spacing. Thus, the change in

streamline radius at a given q-o is damped according to

r(NE,) = r(OLD) + RFfr - r(OLD)] (3.4)

where r is the radius interpolated from the velocity profile.

Sbroutine INTERP is an interpolation routine using second degree Lagrange

interpolating polynomials (Chapra and Canale, 1988). XDATA and YDATA are arrays
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of known values of NDATA points each, i.e. YDATA = f (XDATA). Subroutine

INTERP computes the ordinate values, YOUT, corresponding to the abscissa points,

XIN.

INTERP checks first to ensure that all XIN data points lie within the upper and

lower bounds of XDATA and then compares each XIN data point sequentially with the

XDATA values to find bracketing values. The interpolation result is then

rout - [yJN- XATA(k+1 )][XYN- XATA(k+2)] YDA TA(k)
[XDATA(k) - XDA TA(k +1 )] [XDATA(k) - XDATA(k + 2)] (3.45)

[XIN - XDA TA(k)] [XYV - XDA TA(k + 2)] YDA TA(k + 1)
[XDATA(k + 1) - XDA TA(k)] [XDA TA(k + 1) - XDATA(k + 2)]

+ XIN - XDA TA(k)] [XIN - XDA TA(k + 1)] YDATA(k+2)
[XDATA(k +2) - XDATA(k)] [XDATA(k +2) - XDATA(k + 1)]

Subroutines CONVERI and CONVER2 check the convergence of the meridional

velecities and streamline radii through the passage. At each streamline and q-o

intersection, the change in velocity and radial location is compared with user chosen

tolerances as

"NV (OD) V'N Ir tolerance (velocm*)
V, (3.46)

r(OLD) - r tolerance (radial)

If convergence is not attained, the old meridional velocity and radial location take the
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values of the new velocity and radial location.

The main program calls Subroutine OUTPUT if both the meridional velocities and

the streamline radial locations have converged or if the maximum number of iterations

desired by the user has been exceeded. If the flow field has not converged, a new

iteration is started.
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4. EXAMPLE SOLUTIONS

Example Problem I is for axial flow through an annular passage. If no tangential

velocity profile is included in the input, integration of the radial equilibrium equation,

Eqns. (3.2) and (3.3), at the inlet q-o results in a constant axial velocity profile. Because

of this velocity condition at the inlet, the viscous body forces, Eqns. (3.23) and the

dissipation function, Eqn. (3.20), are all zero and the static temperature profile, Eqn.

(3.4), is constant across the inlet. Thus, the meridional gradients of entropy, angular

momentum, and stagnation enthalpy in Eqns. (3.24) are all zero.

For constant radius hub and casing shape, initialization of the flow field by

Subroutine ESTIM will result in carrying the inlet axial velocity profile and streamline

locations to the downstream q-os. Integration of the radial equilibrium equation using

Eqns. (3.40) and (3.41) simply returns the constant axial velocity since the streamline

curvature and meridional flow angle are zero. Because no changes occur, the program

will converge for any value of viscosity or convergence tolerance input by the user.

An annular passage with varying hub and casing shape forces the estimation of the

flow field for q-os downstream from the inlet to change. For a converging passage, the

downstream axial velocity profiles are initialized as constant values from hub to tip;

however, the velocity values and the streamline radial locations vary from q-o to q-o. The

viscous body forces, dissipation function, and meridional gradients of entropy, angular

momentum, and stagnation enthalpy remain zero. Integration of the radial equilibrium

equation for this case results in a new meridional velocity profile. Thus, the effect of the
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varying endwall geometry propagates through the system of governing equations.

The program was run for the case of a converging nozzle with no tangential

velocity input. The hub and casing profiles formed a converging passage with smoothly

varying first and second derivatives. The hub and casing were symmetric about a

centerline of the passage. Convergence was attained after 3 global and 2 universal

iterations.

The streamline and quasi-orthogonal locations and the axial, radial, and meridional

velocity profiles from the converged solution are shown in Fig. 4. 1. As can be seen in

Fig. 4.1 the flow velocities are not symmetric about the centerline, although the passage

is symmetric. This asymmetry occurs because of the differing areas between streamlines.

The full program output is contained in Appendix D.

Example Problem 2 is for axial flow with swirl through a straight annulus. This

second test case was run using a constant radius hub and casing shape. The tangential

velocity profile at the inlet formed a free vortex profile. The program converged for this

case after 2 global and 2 universal iterations. Figure 4.2 shows the streamline and quasi-

orthogonal locations and the axial, radial, meridional, and tangential velocity profiles for

this test case. The calculations were carried out for 21 streamlines, however, results are

shown for every fifth streamline only. The program output is contained in Appendix D.

Tangential shear stresses on the radially inward and outward faces of the

streamtubes due to the 0 direction velocities should cause the free vortex profile to shift

towards a forced vortex profile. The tangential velocity field shown n Fig. 4.2 shows only
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a small change in velocities without the expected shift towards a forced vortex profile

(Gallimore, 1985). The axial velocity profiles remain essentially constant throughout the

flow field with no streamline radial location shifts.

Cuvature calculations are unstable even in inviscid flows and adding viscosity

decreases stability even more. It is thought at this time that calculations are not being

carried far enough downstream for the flow to shift to the forced vortex profile. Work is

continuing in this direction at this time (Grabowska, 1994).
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APPENDIX A. DISTRIBUTED BLADE BODY FORCES

The component momentum equations, Eqns. (2.10) - (2.12), contain the

distributed blade body force terms f., f,, and f,. These terms are functions of the blade

geometry as described below. Wennerstrom (1974) defined the distributed blade body

force terms as functions of both geometry and the entropy generated by flow over the

blades.

Figure A2 shows a point on an arbitrary blade with lean in the intrinsic coordinate

system, (n, 0, m), at a distance, r, from the axis of the turbomachine. The quasi-

orthogonal, q, lies in the meridional (m-n) plane at an angle (4) + y) from the n direction

(see also Fig. 2.4). The blade, whiLh is not shown, is described by the mean camber

surface. [he unit vector, 1, is tangent to the blade surface at an angle e from j, and lies

in the (q-0) plane. 9 is a unit vector tangent to the blade surface at an angle i from e.

and lies in the (0-m) plane. The blade body force due to pressure differences across the

pressure and suction sides of the blade, fp, is normal to the blade surface.

From Fig. A2, the following unit vectors in the blade surface tangent plane may

be written:

I = CM n+ ip.
(Al)

S= cose S +ion oY) i nd f the + cmos00s p +o Y)

The unit vector in the direction off, is found from the cross product, A x 9 giving
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Figure Ai. Blade force geometry
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sin P [-~ COS6E CO6(O + Y)] i + [ COS COSE COS( + Y)] (A2
VP (A2)

+ [sip COS•e sin(f + y) + cosp sine] i,

This differs from Wennerstrom's (1974) form of the equation due to an error in the cross

product.

The distributed blade body forces for the (n, 0, m) coordinate directions are

determined by separating the components of f, to give

f4 = fP [sinI P cmsin( + y) + cOsj sirra]

fA =f [cos 0 coseCO + Y)] (A3)

f, = f.[sin coDS Co*( + y)]

The tangential blade body force may be determined by rearranging the tangential

momentum equation, Eqn. (2.11), to give

V am( . ) (,,4)
fe=T ý-(r V.tan (M

The magnitude off, can then be found from the tangential component equation in Eqn.

(A3) and the results substituted into the normal and meridional component equations,

yielding
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APPENDIX B. GOVERNING EQUATIONS IN CYLINDRICAL COORDINATES

The governing equations for streamline curvature throughtlow analysis (see Section

2.6) may be written for cylindrical streamsurfaces with streamline coordinate, m,

corresponding to the axial coordinate, z, the normal coordinate, n, to the radius, r, and

with the angle 0 = 0 and r, = o.. Thus, in cylindrical coordinates, we obtain,

Viscous Body Forces, (from Eqn. (2.13))

E,=0

Ee= ! 8r[\ r_/J (B1)

I a [ aJQEz -- r " ,1
ra[ tar

Entropy/Energy Equation, (from Eqn. (2.41))

as _ 1 a (rk aT) + + as, (12)
"" p TVz ar 'r p T Vz -2

where the dissipation function, 4, from Eqn. (2.40) is written as

{[Ve Vef [-+avf (B3)

ar r & (4

Meridional Momentumn/Enthalpy Equation, (from Eqn. (2.45))



B2

T as 1 2 ýr V,)' , Ez +f (B4)

a z a 2r2 Ol

Angular Momentum, (from Eqn. (2.46))

1 aVo)2 
_Vo

2r2 of V-(E0 +yf) (B5)

Radial Equilibrium, (from Eqn. (2.24))

av ar _ T_ _ý! - 1 rvf)-
Oar 8r ar 2r 2 &r - (B6)
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APPENDIX C. COMPUTEkR PROGkAM LISTING

The main program and associated subroutines contained in Appendix C are roughly

in the order in which they are executed (See Fig. 3. 1). Each routine contains commment

lines which describe the input and output variables required for operation as well as

describing the purpose of each section of code.
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APPENDIX D. RESULTS FOR EXAMPLE PROBLEMS

Appendix D contains the full program output for the two example problems

described in Chapter 4.
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